Contents

Introduction/Scope.. 1
Hazard Type Checklist... 2
Hazard Control Measures... 4
Product Safety.. 13

In accordance with the relevant Occupational Health and Safety Legislation for the region, this report serves as confirmation that each model type Haulotte product has undergone a risk assessment to the applicable market. The risk assessment investigates potential hazards associated with operation, maintenance, servicing, inspection, transportation and storage of the subject plant.

To assist, HAULOTTE provides Operators and Maintenance manuals for the product, which provides information regarding residual risks and correspondingly their control measures. Also, in accordance with the legislation, the information required to be supplied to the Purchaser, or User of the plant by the designer, manufacturer, supplier and importer can be found in the Manuals provided.

In addition to these manuals there may be industry safe use standards for the products that can be used to help with identifying potential hazards on the jobsite (e.g. AS 2550.10).

Hazard Type Checklist

The table below provides a summary of some potential hazards associated with the use of the plant. Haulotte evaluates each of these potential hazards during the risk assessment process in an effort to select specific control measures, (e.g. designs, guarding, warnings) that will reduce the likelihood that the operator, platform occupant(s), maintenance personnel or bystanders will be exposed to the hazard.

Many of these hazards can be identified in the relevant States Plant Hazard Guidance document, and AS1418.10.

<table>
<thead>
<tr>
<th>Models</th>
<th>Safe Working load (kg)</th>
<th>Maximum Platform Drive Height (m)</th>
<th>Maximum Working Height (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Star 6 AC</td>
<td>230</td>
<td>3.80</td>
<td>5.80</td>
</tr>
<tr>
<td>Star 6 AC E (ext.)</td>
<td>230</td>
<td>3.80</td>
<td>5.80</td>
</tr>
</tbody>
</table>
Table 1: Hazard Type Checklist

<table>
<thead>
<tr>
<th>Hazard Type</th>
<th>Details</th>
</tr>
</thead>
</table>
| **CRUSHING, ENTANGLEMENT, CUTTING, SEVERING, STABBING, PUNCTURING, SHEARING, FRICTION, IMPACT, TRAPPING** | - Can anyone’s hair, clothing, gloves, cleaning apparatus or any other materials become entangled in moving parts, or objects in motion.
- Can anyone be crushed due to:
 o material falling from plant
 o uncontrolled motion or unexpected movement of plant
 o the plant tipping or rolling over
 o inadequate slowing or stopping devices of plant to control movement
 o support structure collapse
 o being thrown from or under the plant
 o coming in contact with moving parts of the plant during testing, inspection, operation, maintenance, cleaning or repair
 o being trapped between the plant and materials or fixed structures
- Cutting, stabbing & puncturing due to:
 o contact with sharp or flying objects
 o parts of plant or worksite material disintegrating or falling
 o movement of plant
 o anyone’s body parts be sheared between moving parts or surfaces of the plant
 o anyone be burnt due to contact with moving parts or surfaces of the plant
 o anyone be struck by moving objects due to uncontrolled or unexpected movement of plant or work pieces (i.e. failure of the control system) |
| **ERGONOMIC, SLIPPING, TRIPPING, FALLING** | - Can anyone be injured due to:
 o uneven or slippery work surfaces
 o poor housekeeping in the vicinity of or in the plant
 o obstacles being placed in the vicinity of the plant
 o due to repetitive body movements
 o constrained body posture or the need for excessive effort
 o design inefficiency causing mental or psychological stress
 o inadequate or poorly placed lighting of plant or workers IN THE WORKING AREA
 o lack of failsafe measures against human error or human behaviour
 o mismatch of plant with natural human limitations
 o unhealthy posture or excessive efforts
 o lack of personal fall protective equipment
 o inadequate design/positioning of controls |
| **HIGH PRESSURE FLUIDS, HIGH TEMPERATURES, FIRE/EXPLOSION** | - Can anyone come into contact with fluids under high pressure, due to plant failure or misuse
- Can anyone come into contact with objects at high temperatures, or objects which can cause fire or burning
- Can anyone suffer illness due to exposure to high or low temperatures
- Can anyone be injured by explosion of gases, vapours, liquids, dusts or other substances triggered by the operation of the plant or material handled by the plant |
<p>| SUFFOCATION | - Can anyone be suffocated due to lack of oxygen, or atmospheric contamination |</p>
<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazard Type Checklist</td>
</tr>
</tbody>
</table>

ELECTRICAL
- Can anyone be injured by due to:
 - the plant coming into contact with live conductors
 - plant being too close to high tension power lines
 - overload of electrical circuits
 - damaged or poorly maintained electrical leads and cables
 - damaged electrical switches
 - water near electrical equipment
 - lack of insulation against water contact shorting
 - thermal radiation
 - electrostatic radiation
 - magnetic interference from workplace affecting electrical components

STABILITY
- Can machine tip or roll over due to stabiliser not extending.
 - Stabilisers failing structurally, mechanically, or retract unintentionally.
 - Control valve or interlock failure.
 - Setting up on soft ground, unlevel or uneven ground, excessive slope.
 - Driving on rough surfaces, over potholes, hitting fixed objects, excessive side loads, operation in excessive

HYDRAULIC FAILURE
- Hydraulic system failure.
 - Check valve or relief valve failure.
 - Hose or cylinder failure - mechanical or fatigue.

STRUCTURAL FAILURE
- Structural failure due to fatigue, corrosion, or overloading.
 - Pin, cable or linkage failure.
 - General overload, lifting excessive load, loading platform/basket in an unintended way.

MAINTENANCE
- Can anyone be injured:
 - while carrying out routine, preventative or corrective maintenance
 - explosion due to an ignition source near charging battery
 - adjusting equipment for essential components faulty or seized
 - operating a machine that has been damaged or modified
 - operating a malfunctioning machine
 - if the machines guards/cover are missing

TRANSPORT
- Can anyone be injured:
 - due to machine instability while loading/unloading, transporting
 - plant or objects falling from transport truck

OCCUPATIONAL HAZARDS
- Plant obstructing other plants at site.
 - Unauthorised use by untrained personnel.
 - Unintended use of duplicate controls while working.
 - Hearing loss or communication interference due to excessive noise.
 - Lack of personal fall protective equipment.
 - Use of the plant as a crane.

OTHER HAZARDS, EJECTION OF PARTS VIBRATION
- Can anyone be injured or suffer ill-health from exposure to:
 - chemicals, toxic gases or vapours, fumes, dust, noise, vibration, radiation
 - neurological and cardiovascular disorders from excessive vibration
 - inadequate visibility
 - road traffic
 - inadequate means of access
 - safe use of controls (speed of movement)
 - failure of controls
 - safety signs or decals removed
 - energy supply failure (electrical or mechanical)
Hazard Control Measures

HAULOTTE has instilled necessary control measures to minimize potential hazards to the operator, platform occupants, maintenance personnel and any bystanders. The control measures listed below is a summary of potential hazards associated with the plant itself and the necessary control measures implemented.

<table>
<thead>
<tr>
<th>HAZARD NUMBER</th>
<th>HAZARD TYPE</th>
<th>LOCATION / SITUATION</th>
<th>CONTROL METHOD IN PLACE TO REDUCE RISK</th>
<th>ADDITIONAL CONTROL METHOD REQUIRED</th>
</tr>
</thead>
</table>
| 1 | OCCUPATIONAL HAZARDS | General Operation by a trained, or untrained, operator leads to an accident. | • Comply with employer, job site and governmental rules.
• Read, understand and follow the instructions in the operators and safety manuals supplied with the plant.
• Use good safe work practices in a commonsense way.
• Only have trained/certified operators, directed by informed and knowledgeable supervision, running the machine. | • Address during company induction.
• Manuals provided in a storage location on platform. |
| 2 | WORKSITE HAZARDS | Failure to perform a jobsite risk assessment | • A complete jobsite risk assessment should be performed prior to using the plant.
• To assist with this effort, operators and maintenance manual identifies some of the common residual risks for the plant. | Every employer, user, and operator should review these residual risks and implement the necessary control measures to avoid them. Users and employers should also research other supplemental information regarding the safe use of the plant, to support this effort (i.e. AS2550.10). |
| 3 | CRUSHING ENTANGLEMENT CUTTING SEVERING STABBING PUNCTURING SHEARIN FRICTION IMPACT TRAPPING | General Operation | • Guard provided on joystick.
• Safety prop/stand provided to lock mast extensions in position for maintenance.
• Trapping and shearing points between moving parts which are within reach of person on the work platform or standing adjacent to the plant at ground level are avoided by providing safe clearances or guarding, as applicable.
• When the work platform of a plant needs to be raised for routine servicing purposes, the hydraulic system allows the extending structure to be held in the required position. | Address during company induction.
Operator(s) to be aware of clothes and materials hanging near moving parts.
Tools and equipment may be strapped if required by site assessment. |
<table>
<thead>
<tr>
<th>HAZARD NUMBER</th>
<th>HAZARD TYPE</th>
<th>LOCATION / SITUATION</th>
<th>CONTROL METHOD IN PLACE TO REDUCE RISK</th>
<th>ADDITIONAL CONTROL METHOD REQUIRED</th>
</tr>
</thead>
</table>
| 3 (cont’d) | Crushing, Collision / Striking | Operating in an area where obstacles, other people and plant may be present | - Beacon and motion alarm alert others in the area that the unit is in use.
- Operator’s manual contains instructions and guidelines for operating in these circumstances.
- Warning decal to stay clear of the pothole actuation is on the plant. | - Drive movement not provided at ground controls.
- Site management must ensure platform and work area remains free of debris and clear from obstacles |
| 3 (cont’d) | Crushing, Collision / Striking | Underneath platform when platform is being lowered | - Beacon and motion alarm alert others in the area that the unit is in use.
- Plant is clearly labeled with warning decals due to the potential crushing hazard associated with the type plants
- Correct maintenance and operating procedures with safety instructions are provided in the manual. | |
| Crushing | Machine falling off truck during transport | - Provision are made for both lifting and tie down.
- Correct procedures are contained in the Operator’s manual | |
| Crushing | Lifting machine | - Designated lifting points are indicated by decals.
- Correct-lifting procedure is provided in the Operators manual. | |
| Entanglement, friction, cutting | Components & Maintenance | - Components are enclosed in compartments.
- Warning decals are affixed.
- Operators are not subjected to friction as there are no high speed exposed components. | - Maintenance to be carried out by qualified personnel.
- Trained and competent ground personnel required to use ground controls. |
<table>
<thead>
<tr>
<th>HAZARD NUMBER</th>
<th>HAZARD TYPE</th>
<th>LOCATION / SITUATION</th>
<th>CONTROL METHOD IN PLACE TO REDUCE RISK</th>
<th>ADDITIONAL CONTROL METHOD REQUIRED</th>
</tr>
</thead>
</table>
| 3 (cont’d) | Entanglement, shearing | Components & Maintenance | • Crushing hazard decals are clearly displayed on the plant.
• Warnings are placed in operator’s manual to prevent entanglement. | |
| | Friction | Mechanical Failure | • Operators are not subjected by the plant to friction, as there are no high speed exposed components.
• Locations of lubrication points are shown in the manual. Also a lubrication schedule is provided along with grease types to be used. | |
| | Cutting Stabbing Puncturing | General Operation | • Controls and other contact surfaces have no sharp edges.
• Controls are ergonomically designed. | • Bystanders must stay clear when plant is operational. |
| 4 | ERGONOMIC SLIPPING TRIPPING FALLING | Loss of braking while travelling | • Brakes on the plant automatically engage when the power to them has stopped or failed.
• Brakes are capable of holding the plant on approved slopes.
• The plant stopping distance at maximum speed meets the design requirements.
• Control positions on the plant are located and designed to allow excellent visibility and to allow slow, deliberate movements to prevent contact with adjacent objects.
• When the platform of the plant is elevated, the drive speed is reduced.
Proportional drive is provided. | • Site management to ensure occupants in platform wear a fall arrest harness, with lanyard and energy absorber in accordance with governmental regulations.
• Use a harness adjusted to your size that has been inspected by a competent person. |
| | Falling | General Operation | • Operators are protected from falling from platform with a solid peripheral railing around the entire platform.
• Fall arrest harness attachment points are provided and labeled on the platform.
• Easy entry at ground level as platform lowers to ground.
• RED emergency (E-Stop) buttons are positioned at all control stations.
• Interlocks are designed in to prevent inadvertent movement.
• Non-slip surface provided on the entry steps and platform. | |
<p>| | General operation - Lighting | General Operation | • Optional spotlights can be fitted to the platform rail. | |
| | Unintended platform movement | General Operation | • Extending system is designed and constructed to prevent any inadvertent movements. | |</p>
<table>
<thead>
<tr>
<th>HAZARD NUMBER</th>
<th>HAZARD TYPE</th>
<th>LOCATION / SITUATION</th>
<th>CONTROL METHOD IN PLACE TO REDUCE RISK</th>
<th>ADDITIONAL CONTROL METHOD REQUIRED</th>
</tr>
</thead>
</table>
| 5 | HIGH PRESSURE FLUIDS HIGH | High Pressure fluid jets resulting puncturing the skin or eyes | • Hydraulic hoses used have a bursting pressure well over the working pressure.
• Relief valves are used to prevent over pressurizing the hydraulic system.
• Guards are provided at control stations protecting the persons, or standing adjacent to the plant at ground level, against thermal and mechanical hazards.
• High temperature components such as motor and pump are positioned out of arms reach and in enclosures.
• The batteries are constrained to prevent unintentional displacement, or ejection of electrolyte.
• Filling points for flammable fluids are positioned to minimize the risk of fire from spillage on hot parts. | Fire extinguishers to be provided following job assessment.
• JSA, training and supervision must be provided by site management. |
| 6 | SUFFOCATION | Inhalation of exhaust gases | • The size of the machine prevents operation in confined spaces.
• The design of the platform is that of open air. | |
| 7 | ELECTRICAL | Electrocution, Working too close to energized power lines | • Machine is clearly marked with electrical warning decals to reduce the risk.
• Warning decals are placed on the plant and are marked non-insulating.
• Operator’s manual states that the machine is not insulated.
• Safe operating procedures and minimum approach distances are placed in the manual.
• Decal - Minimum safety distance from the energized/power lines is fitted to the plant. | • JSA, training and supervision must be provided by site management to ensure safe working clearances from the electric field are assessed. |
| | Electromagnetic interference | | • Design is sufficient for normal use.
• Testing is completed per EN methods and per IEC requirements. | |
| | Shock from electrical system | | • Plants fitted with 240V AC outlets have an earth leakage circuit breaker and wiring, as applicable.
• Cables are insulated and secured to plant. These cables have protective rubber boots over connection points to prevent contact shorting during maintenance.
• Inspection and maintenance procedures are placed in the operating manual. | |
| | Loose wire shorts | | • Connectors used are either insulated crimp lugs, locking plastic plugs, or permanent type clamps.
• Wiring is routed to prevent chaffing.
Plants are fitted with the control system to assist in faultfinding.
• Fault codes are explained in the operating manual. | • Conduct inspections as scheduled. |

<table>
<thead>
<tr>
<th>HAZARD NUMBER</th>
<th>HAZARD TYPE</th>
<th>LOCATION / SITUATION</th>
<th>CONTROL METHOD IN PLACE TO REDUCE RISK</th>
<th>ADDITIONAL CONTROL METHOD REQUIRED</th>
</tr>
</thead>
</table>
| 7 (cont'd) | ELECTRICAL (cont’d) | Water bridging | • Wiring looms of control boxes are covered with water resistant covers.
• Electric components are tested for water damage to meet IP requirements.
• Control cards for functions and flow control are encased in epoxy resin to prevent water damage.
• Inspection and maintenance procedures are placed in the operator’s manual. | |
| | | Battery charging | • Batteries are trickle charged, so gas (hydrogen) build-up is not considered a problem.
• Safe charging procedures are placed in the operator’s manual.
• Warning decal on the battery and the charging precautions are on the plant. | • As required, charge battery in a well-ventilated area. |
| 8 | STABILITY | Occupational Hazard Unauthorized use | • Plant is equipped with a key switch to prevent unauthorized use.
• Additionally only one control station can be operated at any given time. | |
| | | Overloading the platform | • Maximum safe working load and number of people is clearly marked on the plant.
• The plant is not fitted with load sensing as the design utilizes the enhanced overload and stability criteria specified in AS 1418.10 clauses 2.3.1.5 & 2.3.1.6.
LSS exemption using a) platform size b) maximum lift rating c) stability test. | • Do not overload platform or carry material, which increases wind surface area. |
| | | Excessive manual side force | • Maximum allowable manual side force is marked on plant. | |
| | | Tip Over | • All plants have undergone detailed stability analysis.
• These calculations take into consideration the machines expected operating configuration, envelope, and approved operating conditions (i.e. slope) | |
| | | Tip Over | • Stability analysis takes into consideration a number of foreseeable forces including gravitational (based on rated capacity), dynamic, wind, and manual forces. | |
| | | Tip Over | • Stability analysis not only evaluates the plant’s static condition, but also potential effects of dynamic conditions (i.e. braking, and depressions). | |
| | | Tip Over | • Stability analysis is verified by physically testing the static and dynamic stability of the design. | |
| | | Check or relief valve failure | • A manual descent valve is installed on the chassis front to allow emergency retrieval.
• Inspection and maintenance procedures are placed in the manuals. | • Site management to ensure a ground crew member is trained in emergency retrieval of plant. |
<table>
<thead>
<tr>
<th>HAZARD NUMBER</th>
<th>HAZARD TYPE</th>
<th>LOCATION / SITUATION</th>
<th>CONTROL METHOD IN PLACE TO REDUCE RISK</th>
<th>ADDITIONAL CONTROL METHOD REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 (cont'd)</td>
<td>STABILITY (continued)</td>
<td>Slope Side force</td>
<td>• Interlocks prevent plant operation on excessive slope.</td>
<td>• Site management to ensure occupants in platform wear a fall arrest harness, with lanyard and energy absorber in accordance with governmental regulations.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Tilt switch provides an audible and visual alarm when plant is put in an out of level condition. Disables drive and raise functions.</td>
<td>• Site management to ensure operators are trained in EWP operation and plant is operated within specified limits.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• A permanent type specification plate is permanently attached to the plant which shows SWL, max slope, max side force and wind speed.</td>
<td>• Machine must be operated within maximum ratings for indoor and outdoor use.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Manual states that the machine is not to be driven and the platform must not be elevated on sloping, uneven or soft ground.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Indoor and outdoor specifications provided.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Warning decals are placed on plant, and safe operating procedures are placed in the operator’s manual.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Travelling; Uncontrolled movement during brake-release mode</td>
<td>• Plant is equipped with a chassis inclination device, which sounds an alarm when the slope is approaching the allowable limits.</td>
<td>• Site management to ensure occupants in platform wear a fall arrest harness, with lanyard and energy absorber in accordance with governmental regulations.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Travel speed is limited when elevated.</td>
<td>• Operate plant in accordance with load, slope and wind limits.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Interlocks prevent plant operation on excessive slope.</td>
<td>• Use brake-release on flat ground only with consideration that the machine is un-braked in this configuration.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Braking is designed to hold the plant on its maximum rated grade.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Brakes automatically engage when the power to them has stopped or failed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Brake release system is controlled by “hold-on” switch. Brakes re-apply when switch is released.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Plant is tested for dynamic stability in various conditions as per stopping distances at maximum speeds requirement.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Warning decals are placed on plant, and safe operation and transportation procedures are placed in the operator’s manual.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• A permanent type specification plate is stamped with design limits.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Driving too fast when elevated</td>
<td>• Control system limits the travel speed when elevated.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adjusting equipment</td>
<td>• Test points are provided for checking of pressure settings.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Adjustment points require tools to change.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Correct adjusting procedures are placed in the manual.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Hydraulic (and other) specifications are listed to enable adjustment.</td>
<td></td>
</tr>
<tr>
<td>HAZARD NUMBER</td>
<td>HAZARD TYPE</td>
<td>LOCATION / SITUATION</td>
<td>CONTROL METHOD IN PLACE TO REDUCE RISK</td>
<td>ADDITIONAL CONTROL METHOD REQUIRED</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>---------------------------------------</td>
<td>--</td>
<td>-------------------------------------</td>
</tr>
</tbody>
</table>
| 9 | HYDRAULIC FAILURE | Unintended platform movement | • An enable switch is fitted and dual input is required by operator.
• When power to the controls stop or fails, this system automatically locks the work platforms movements, in any position. | • Training and supervision must be provided by site management. |
| | | Excessive pressure build-up | • Relief valves are used to prevent over pressurizing the hydraulic system.
• Holding valves prevent unsafe descent in the advent of failure.
• Correct pressures listed in the service manual.
• Hydraulic hoses used have a bursting pressure well in excess of the working pressure.
• Inspection and maintenance procedures are placed in the operator’s manual. | |
| | | Overloading the structure and drive system. | • Pressure limiting devices are provided to protect the extending structure, and drive system, to prevent structural damage. | • Do not overload platform. |
| | | Mechanical Pump, motor, control valve or interlock failure | • In the advent of pump or motor failure, a manual lowering system is installed on the chassis front.
• Holding valves on cylinders prevent inadvertent movement.
• The plant has malfunction signals to assist in fault finding.
• Fault Codes are placed in the operator’s manual.
• Holding valves are installed to prevent decent due to hydraulic failure.
• A manual mechanically actuated emergency descent is installed for emergency retrieval.
• Inspection and maintenance procedures and daily inspection list are placed in the operator’s manual. | • Inspection, cleaning, maintenance and repair must be conducted when plant is stationary. |
<table>
<thead>
<tr>
<th>HAZARD NUMBER</th>
<th>HAZARD TYPE</th>
<th>LOCATION / SITUATION</th>
<th>CONTROL METHOD IN PLACE TO REDUCE RISK</th>
<th>ADDITIONAL CONTROL METHOD REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>STRUCTURAL FAILURE</td>
<td>Failure of any structure</td>
<td>• The plants have undergone detailed structural analysis. • These calculations take into consideration the machine’s expected operating configuration, envelope, and approved conditions (i.e. slope).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Failure of any structure</td>
<td>• Structural analysis takes into consideration a number of foreseeable forces including gravitational (based on rated capacity), dynamic, wind and manual forces.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Failure of any structure</td>
<td>• Structural analysis is verified by physically testing the structural soundness through both static and dynamic loading.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fatigue</td>
<td>Failure of any structure</td>
<td>• The plant has been cyclic tested beyond its rated design life cycle against fatigue. • Maintenance schedule provided in the manuals. • Annual inspections are required as stated in the manual.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wear and corrosion</td>
<td>• Corrosive surfaces are painted, components subject to wear have provisions to minimize wear by using sacrificial components or lubrication e.g. wear pads, self-lubricating pins. • Lubrication points and a schedule for maintenance are provided in the manual.</td>
<td>• Conduct pre-operational inspections and periodic inspections as scheduled.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>General overload</td>
<td>• Tools are required to alter pressure settings. • Test points are provided for checking of pressures. • Warning decals on machine show safe working loads. • Safe operating procedures are placed in manual.</td>
<td>• Do not overload the platform.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overloading Platform</td>
<td>• Maximum safe working load and number of people is clearly marked on the plant. • The plant is not fitted with load sensing as the design utilizes the enhanced overload and stability criteria specified in AS 1418.10 clauses 2.3.1.5 & 2.3.1.6. LSS exemption using a) platform size b) maximum lift rating c) stability test.</td>
<td>• Do not overload the platform at elevated heights.</td>
</tr>
<tr>
<td>HAZARD NUMBER</td>
<td>HAZARD TYPE</td>
<td>LOCATION / SITUATION</td>
<td>CONTROL METHOD IN PLACE TO REDUCE RISK</td>
<td>ADDITIONAL CONTROL METHOD REQUIRED</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------</td>
<td>----------------------</td>
<td>---</td>
<td>--</td>
</tr>
</tbody>
</table>
| | Falling | General Operation | • Operators are protected from falling from platform with a solid peripheral railing around the entire platform.
| | | | • Fall arrest harness attachment points are provided on the platform.
| | | | • RED emergency (E-stop) buttons are positioned at all controls stations.
| | | | • Site management to ensure occupants in platform wear a fall arrest harness, with lanyard and energy absorber in accordance with governmental regulations. |
| | Slipping | From within the platform | • Operator’s manual says to keep platform floor free of debris.
| | Tripping | | • Interlocks are in place to prevent inadvertent movements.
| | | | • An enable button must be pressed before operation.
| | | | • Site management to ensure platform remains in clean, free of debris and safe condition.
| | Excessive | General Operation | • Controls are designed to operate with one hand and are either of joystick, toggle or button type.
| | effort | | • Non-assisted controls are minimized using electrical actuation.
| | | | • Where controls are mechanical in nature operating effort is reduced as far as practicable.
| | | | • Controls return to neutral upon release and movement will only occur when physically actuated.
| | | | • Only trained, qualified personnel must do maintenance work.
| | | | • Refer to the operator’s manual for the procedure to install the maintenance stand.
| | Maintenance | General Operation | • Components which require regular maintenance such as filters are placed in an easily accessed area.
| | | | • The plant features compartments which house batteries, motor, valve bank etc., for easy access.
| | | | • The maintenance prop/stand provided.
| | | | • Replace control box faceplate label(s) if illegible or damaged. |
| | Operating | General Operation | • Control box face plates use pictures for functions, and switches, which control ‘direction’ and operate in that direction.
| | stress | | • Plants are field tested for controllability and ease of use.
| | | | • Warning decals are used to warn of incorrect operating procedures.
| | | | • Replace control box faceplate label(s) if illegible or damaged. |
| | Noise | General Operation | • Motor and other hydraulic components are housed in a compartment and are not considered to pose noise problems.
| | | | • Where noise is considered excessive, level testing is done and noted in the operator’s manual.
| | | | • Replace control box faceplate label(s) if illegible or damaged. |
Product Safety
The information provided in this document is only a small example of the activities which have been undertaken by Haulotte GROUP to ensure the safety of the plants.

These include:

- Performing computer simulation/modeling of product and internal design calculations.
- Independent design review by an independent engineer to local design requirements is completed in Australia.
- Cycle testing of components to ensure fatigue life is adequate for a 10 year life is completed.
- Extensive field testing of prototype units to ensure faults and hazards are identified.
- Conducting an extensive Product Development Process, on each plant design, which incorporates risk assessment and field testing to prove the plant design, is safe to use, by a trained and authorized operator, for its intended purpose.

Occupational Health & Safety Legislation
The below legislation has been used to produce this document.

ACT, NSW, QLD: Work Health and Safety Act 2011
NT: Work Health and Safety (National Uniform Legislation) Act 2011
VIC: Occupational Health and Safety Act 2004
WA: Occupational Safety and Health Act 1984